Mixed Designs: Between and Within

Psy 420 Ainsworth

Mixed Between and Within Designs

- Conceptualizing the Design
 Types of Mixed Designs
- Assumptions
- Analysis
 - Deviation
 - Computation
- Higher order mixed designs
- Breaking down significant effects

- This is a very popular design because you are combining the benefits of each design
- Requires that you have one between groups IV and one within subjects IV
- Often called "Split-plot" designs, which comes from agriculture
- In the simplest 2 x 2 design you would have

 In the simplest 2 x 2 design you would have subjects randomly assigned to one of two groups, but each group would experience 2 conditions (measurements)

	GRE - before	GRE - after
	S ₁	S ₁
	S ₂	S ₂
Kaplan	S_3	S ₃
	S_4	S ₄
	S_5	S_5
	S ₆	S ₆
	S ₇	S ₇
Princeton	S ₈	S ₈
	S ₉	S ₉
	S ₁₀	S ₁₀

Advantages

- First, it allows generalization of the repeated measures over the randomized groups levels
- Second, reduced error (although not as reduced as purely WS) due to the use of repeated measures
- Disadvantages
 - The addition of each of their respective complexities

	Pretest		Posttest
	S ₁		S ₁
- , ,	S ₂		S ₂
I reatment Group	S_3	Treatment	S ₃
Cloup	S_4		S ₄
	S_5		S_5
Control Group	S_6		S_6
	S ₇		S ₇
	S ₈	No Treatment	S ₈
	S ₉		S ₉
	S ₁₀		S ₁₀

- Types of Mixed Designs
 - Other than the mixture of any number of BG IVs and any number of WS IVs...
 - Pretest Posttest Mixed
 Design to control for
 testing effects

Assumptions

- Normality of Sampling Distribution of the BG IVs
 - Applies to the case averages (averaged over the WS levels)
- Homogeneity of Variance
 - Applies to every level or combination of levels of the BG IV(s)

Assumptions

- Independence, Additivity, Sphericity
 - Independence applies to the BG error term
 - But each WS error term confounds random variability with the subjects by effects interaction
 - So we need to test for sphericity instead; the test is on the average variance/covariance matrix (over the levels of the BG IVs)

Assumptions

Outliers

- Look for them in each cell of the design
- Missing data
 - Causes the same problems that they did in the BG and WS designs separately
 - Data points missing across the WS part can be estimated as discussed previously
 - Missing data in the randomized groups part causes non-orthogonality

Analysis

		Within Groups			
		b ₁	b ₂	b ₃	
		S ₁	S ₁	S ₁	
		S ₂	S ₂	S ₂	
	a ₁	S_3	S_3	S ₃	
		S_4	S_4	S_4	
S		S_5	S_5	S ₅	
dno	a ₂	S ₆	S ₆	S ₆	
ы П С		S ₇	S ₇	S ₇	
zed		S ₈	S ₈	S ₈	
omi		S ₉	S ₉	S ₉	
and		S ₁₀	S ₁₀	S ₁₀	
Ř		S ₁₁	S ₁₁	S ₁₁	
		S ₁₂	S ₁₂	S ₁₂	
	a ₃	S ₁₃	S ₁₃	S ₁₃	
		S ₁₄	S ₁₄	S ₁₄	
		S ₁₅	S ₁₅	S ₁₅	

Sources of Variance

- $SS_T = SS_{BG} + SS_{WS}$
- What are the sources of variance?
 - A
 - S/A
 - B
 - AB
 - BxS/A
 - T
- Degrees of freedom?

Example - Books by Month

- Example:
 - Imagine if we designed the previous research study concerning reading different novels over time
 - But instead of having everyone read all of the books for three months we randomly assign subjects to three different books and have them read for three months

				B: Month			
			b ₁ :	b ₂ :	b ₃ :		
			Month 1	Month 2	Month 3	Case Means	
		S_1	1	3	6	S ₁ = 3.333	
		S ₂	1	4	8	S ₂ = 4.333	
	a ₁ : <i>Science Fiction</i>	S ₃	3	3	6	S ₃ = 4	
		S_4	5	5	7	S ₄ = 5.667	
		S ₅	2	4	5	S ₅ = 3.667	
			$a_1b_1 = 2.4$	$a_1b_2 = 3.8$	$a_1b_3 = 6.4$	a ₁ = 4.2	
lər	a2: <i>Mystery</i>	S ₆	3	1	0	S ₆ = 1.333	
NON		S ₇	4	4	2	S ₇ = 3.333	
e of		S ₈	5	3	2	S ₈ = 3.333	
Тур		S 9	4	2	0	S ₉ = 2	
A:		S ₁₀	4	5	3	S ₁₀ = 4	
		a2	$a_2b_1 = 4$	a ₂ b ₂ = 3	$a_2b_3 = 1.4$	a ₂ = 2.8	
		S ₁₁	4	2	0	S ₁₁ = 2	
		S ₁₂	2	6	1	S ₁₂ = 3	
	a ₃ : <i>Romance</i>	S ₁₃	3	3	3	S ₁₃ = 3	
		S ₁₄	6	2	1	S ₁₄ = 3	
		S ₁₅	3	3	2	S ₁₅ = 2.667	
			$a_3b_1 = 3.6$	$a_3b_2 = 3.2$	a ₃ b ₃ = 1.4	a ₃ = 2.733	
			b ₁ = 3.333	b ₂ = 3.333	b ₃ = 3.067	GM = 3.244	

Sums of Squares - Deviation

• The total variability can be partitioned into A, B, AB, S/A, and B*S/A

$$\begin{split} SS_{Total} &= SS_{A} + SS_{B} + SS_{AB} + SS_{S/A} + SS_{B^{*}S/A} \\ \sum Y_{ijk} - \overline{Y}_{...}^{2} &= \sum n_{j} \overline{Y}_{.j.} - \overline{Y}_{...}^{2} + \sum n_{k} \overline{Y}_{..k} - \overline{Y}_{...}^{2} + \\ &+ \left[\sum n_{jk} \overline{Y}_{.jk} - \overline{Y}_{...}^{2} - \sum n_{j} \overline{Y}_{.j.} - \overline{Y}_{...}^{2} - \sum n_{k} \overline{Y}_{..k} - \overline{Y}_{...}^{2} \right] \\ &+ j \sum \overline{Y}_{i...} - \overline{Y}_{.j.}^{2} + \left[\sum Y_{ijk} - \overline{Y}_{..jk}^{2} - j \sum \overline{Y}_{i...} - \overline{Y}_{...}^{2} \right] \end{split}$$

$$SS_{A} = \sum n_{j} \ \overline{Y}_{.j.} - \overline{Y}_{...}^{2} = 15*[\ 4.2 - 3.244^{2} + \ 2.8 - 3.244^{2} + \ 2.733 - 3.244^{2}] = 20.583$$
$$SS_{B} = \sum n_{k} \ \overline{Y}_{..k} - \overline{Y}_{...}^{2} = 15*[\ 3.333 - 3.244^{2} + \ 3.333 - 3.244^{2} + \ 3.067 - 3.244^{2}] = .708$$

$$SS_{AB} = \left[\sum n_{jk} \ \overline{Y}_{.jk} - \overline{Y}_{...}^{2} - \sum n_{j} \ \overline{Y}_{.j.} - \overline{Y}_{...}^{2} - \sum n_{k} \ \overline{Y}_{..k} - \overline{Y}_{...}^{2}\right] = \sum n_{jk} \ \overline{Y}_{.jk} - \overline{Y}_{...}^{2} = 5 * \left[(2.4 - 3.244)^{2} + (3.8 - 3.244)^{2} + (3.4 - 3.244)^{2} + (3.244)^{$$

$$SS_{S/A} = k \sum \bar{Y}_{i..} - \bar{Y}_{.j.}^{2} = 3 * [3.333 - 4.2^{2} + 4.333 - 4.2^{2} + 4 - 4.2^{2} + 5.667 - 4.2^{2} + 3.667 - 4.2^{2} + 3.333 - 2.8^{2} + 1.333 - 2.8^{2} + 3.333 - 2.8^{2} + 3.333 - 2.8^{2} + 3.333 - 2.8^{2} + 3.333 - 2.8^{2} + 3 - 2.733^{2} + 3 - 2.7$$

 $SS_{B^*S/A} = \left| \sum_{ijk} Y_{ijk} - \overline{Y}_{.jk}^2 - k \sum_{ijk} \overline{Y}_{i..} - \overline{Y}_{.j.}^2 \right| =$ $\sum Y_{iik} - \overline{Y}_{iik}^{2} = 1 - 2.4^{2} + 1 - 2.4^{2} + 3 - 2.4^{2} + 5 - 2.4^{2} + 2 - 2.4^{2} +$ $+ 3 - 3.8^{2} + 4 - 3.8^{2} + 3 - 3.8^{2} + 5 - 3.8^{2} + 4 - 3.8^{2} + 3 - 3.8^{2}$ $+ 6 - 6.4^{2} + 8 - 6.4^{2} + 6 - 6.4^{2} + 7 - 6.4^{2} + 5 - 6.4^{2} + 6 - 6.4^{2}$ $+ 3-4^{2} + 4-4^{2} + 5-4^{2} + 4-4^{2} + 4-4^{2} + 4-4^{2} + 4$ $+ 1 - 3^{2} + 4 - 3^{2} + 3 - 3^{2} + (-3)^{+} + (-3)^{+}$ $+ (-1.4)^{2} + ($ +(-3.6) + (-3.6) ++(-3.2) + (-3.2) ++(-1.4) + (-1.4) + (-1.4) + (-1.4) + (-1.4) + (-1.4) = 63.6 $SS_{B^*S/A} = 63.6 - 26.4 = 37.2$

 $SS_{Total} = \sum_{i} Y_{iik} - \overline{Y}_{iik}^2 =$ $SS_{Total} = 1 - 3.244^{2} + 1 - 3.244^{2} + 3 - 3.244^{2} + 5 - 3.244^{2} + 2 - 3.244^{2} + 2 - 3.244^{2} + 3 - 3.244^{2} + 5 - 3.244^{2} + 3 - 3.244^{2} +$ $+ 3 - 3.244^{2} + 4 - 3.244^{2} + 3 - 3.244^{2} + 5 - 3.244^{2} + 4 - 3.244^{2} + 4$ $+ 6 - 3.244^{2} + 8 - 3.244^{2} + 6 - 3.244^{2} + 7 - 3.244^{2} + 5 - 3.244^{2} +$ $+ 3 - 3.244^{2} + 4 - 3.244^{2} + 5 - 3.244^{2} + 4 - 3.244^$ +(-3.244) + (-3.24) + (-3.244) + (-3.244) + (-3.244) + (-3.244) + (-3.244)+ (-3.244) + (-3.24) + (-3.244) + (-3.244) + (-3.244) + (-3.244) + (-3.244)+(-3.244) + (-3.24) + (-3.244) + (-3.244) + (-3.244) + (-3.244) + (-3.244)+ (-3.244) + (-3.24) + (-3.24) + (-3.24) + (-3.24) + (-3.24) + (-3.24) + (-+(-3.244) + (-3.24) + (-3.244) + (-3.244) + (-3.244) + (-3.244) + (-3.244)

				B: Month			
			b ₁ :	b ₂ :	b ₃ :		
			Month 1	Month 2	Month 3	Case Total	
		S_1	1	3	6	S ₁ = 10	
		S ₂	1	4	8	S ₂ = 13	
	a ₁ : <i>Science Fiction</i>	S ₃	3	3	6	S ₃ = 12	
		S_4	5	5	7	S ₄ = 17	
		S ₅	2	4	5	S ₅ = 11	
			a ₁ b ₁ = 12	a ₁ b ₂ = 19	a ₁ b ₃ = 32	a ₁ = 63	
	a2: Mystery	S_6	3	1	0	S ₆ = 4	
lər		S ₇	4	4	2	S ₇ = 10	
NON		S ₈	5	3	2	S ₈ = 10	
e of		S ₉	4	2	0	S ₉ = 6	
Typ		S ₁₀	4	5	3	S ₁₀ = 12	
A:			a ₂ b ₁ = 20	a ₂ b ₂ = 15	a ₂ b ₃ = 7	a ₂ = 42	
		S ₁₁	4	2	0	S ₁₁ = 6	
		S ₁₂	2	6	1	S ₁₂ = 9	
	a ₃ : <i>Romance</i>	S ₁₃	3	3	3	S ₁₃ = 9	
		S ₁₄	6	2	1	S ₁₄ = 9	
		S ₁₅	3	3	2	S ₁₅ = 8	
			a ₃ b ₁ = 18	$a_3b_2 = 16$	a ₃ b ₃ = 7	a ₃ = 41	
			b ₁ = 50	b ₂ = 50	b ₃ = 46	Total = 146	

Sums of Squares - Computational

- What are the degrees of freedom?
- And convert them into the formulas
 - A = a 1
 - S/A = a(s 1) = as a
 - B = b 1
 - AB = (a 1)(b 1)
 - BxS/A = a(b 1)(s 1)
 - T = abs 1 or N 1

SS _A	$=\frac{\sum A^2}{bs}-\frac{T^2}{abs}$	$= \frac{63^2 + 42^2 + 41^2}{3(5)} - \frac{146^2}{3(3)(5)}$
SS _{S/A}	$=\frac{\sum (AS)^2}{b} - \frac{\sum A^2}{bs}$	$= \frac{10^2 + 13^2 + 12^2 + \dots + 8^2}{3} - \frac{63^2 + 42^2 + 41^2}{3(5)}$
SS _B	$=\frac{\sum B^2}{as}-\frac{T^2}{abs}$	$=\frac{50^2+50^2+46^2}{3(5)}-\frac{146^2}{3(3)(5)}$
SS _{AB}	$= \frac{\sum (AB)^2}{s} - \frac{\sum A^2}{bs} - \frac{\sum B^2}{as} + \frac{T^2}{abs}$	$= \frac{12^2 + 19^2 + 32^2 + 20^2 + 15^2 + 7^2 + 18^2 + 16^2 + 7^2}{5}$
		$-\frac{63^2+42^2+41^2}{3(5)}-\frac{50^2+50^2+46^2}{3(5)}+\frac{146^2}{3(3)(5)}$
$SS_{B \times S/A}$	$= \sum Y^2 - \frac{\sum (AB)^2}{s}$	$= 1^{2} + 1^{2} + 3^{2} + 5^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + \dots + 1^{2} + 2^{2}$
	$-\frac{\sum (AS)^2}{h} + \frac{\sum A^2}{hs}$	$- \frac{12^2 + 19^2 + 32^2 + 20^2 + 15^2 + 7^2 + 18^2 + 16^2 + 7^2}{5}$
	0 03	$-\frac{10^2 + 13^2 + \dots + 8^2}{3} + \frac{63^2 + 42^2 + 41^2}{3(5)}$
SS _T	$= \sum Y^2 - \frac{T^2}{abs}$	$= 1^{2} + 1^{2} + 3^{2} + 5^{2} + 2^{2} + 3^{2} + \dots + 1^{2} + 2^{2} - \frac{146^{2}}{3(3)(5)}$

SS _A	= 494.27 - 473.69		20.58
SS _{S/A}	= 520.67 - 494.27	=	26.40
SS _B	= 474.40 - 473.69	=	0.71
SS _{AB}	= 566.40 - 494.27 - 474.40 + 473.69	=	71.42
$SS_{B \times S/A}$	= 630 - 566.40 - 520.67 + 494.27		37.20
SS _T	= 630 - 473.69		156.31

$$df_{A} = a - 1 = 3 - 1 = 2$$

$$df_{S/A} = a(s - 1) = 3(5 - 1) = 12$$

$$df_{B} = b - 1 = 3 - 1 = 2$$

$$df_{AB} = (a - 1)(b - 1) = (3 - 1)(3 - 1) = 4$$

$$df_{BxS/A} = a(b - 1)(s - 1) = 3(3 - 1)(5 - 1) = 24$$

$$df_{T} = abs - 1 = N - 1 = 3(3)(5) - 1 = 44$$

Results - ANOVA summary table

Source	SS	df	MS	F
Randomized Groups				
Α	20.58	2	10.29	$\frac{10.29}{2.20} = 4.68$
S/A	26.40	12	2.20	
Repeated Measures				
В	0.71	2	0.36	$\frac{0.36}{1.55} = 0.23$
$A \times B$	71.42	4	17.86	$\frac{17.86}{1.55} = 11.52$
$B \times S/A$	37.20	24	1.55	1.00
T	156.31	44		

Higher order mixed designs

		Sources of Variability				
Design	Randomized- GroupsRepeated- MeasuresnIVsIVsIVs		Randomized Groups	Repeated Measures	Error Terms	
Two- way	A	D	A		S/A	
mixed	А	D		$B, A \times B$	$B \times S/A$	
			$A, B, A \times B$		S/AB	
Thurs	А, D	C		$C, A \times C, B \times C, A \times B \times C$	$C \times S/AB$	
way	A	В, С	Α		S/A	
mixed A				$B, A \times B$	$B \times S/A$	
				$C, A \times C$	$C \times S/A$	
				$B \times C, A \times B \times C$	$B \times C \times S/A$	
			$A, B, A \times B$		S/AB	
Four- way	AD	<i>C</i> , <i>D</i>		$C, A \times C, B \times C, A \times B \times C$	$C \times S/AB$	
mixed	A, D			$D, A \times D, B \times D, A \times B \times D$	$D \times S/AB$	
				$C \times D, A \times C \times D, B \times C \times D, A \times B \times C \times D$	$C \times D \times S/AB$	

• Between Groups IV(s)

- If you have a significant BG main effect(s) they need to be broken down to find which levels are different
- The comparisons are done the same way as completely BG comparisons
- The BG comparison error term is the same for all BG comparisons

$$F = \frac{n_{\overline{Y}} \left(\sum w_{j} \overline{Y}_{j}\right)^{2} / \sum w_{j}^{2}}{MS_{S/AB\cdots}} = \frac{SS_{(reg.X_{j})}}{MS_{S/AB}}$$

• Within Groups Variables

- If a WG main effect is significant it also needs to be followed by comparisons
- WG comparisons differ from BG variables in that a separate error term needs to be generated for each comparison
- Instead of the Fcomp formula you would actually rearrange the data into a new data set

• Example

		b ₁ : Month 1	b ₂ : Month 2	b ₃ : Month 3	Case Totals
	s ₁	1	3	6	$A_1S_1 = 10$
	s2	1	4	8	$A_1 S_2 = 13$
a_1 : Science Fiction	<i>s</i> ₃	3	3	6	$A_1S_3 = 12$
	<i>s</i> ₄	5	5	7	$A_1S_4 = 17$
	<i>s</i> ₅	2	4	5	$A_1 S_5 = 11$
		$A_1 B_1 = 12$	$A_1 B_2 = 19$	$A_1B_3 = 32$	$A_1 = 63$
	<i>s</i> ₆	3	1	0	$A_2 S_6 = 4$
	s ₇	4	4	2	$A_2S_7 = 10$
<i>a</i> ₂ : Mystery	s ₈	5	3	2	$A_2 S_8 = 10$
	<i>s</i> 9	4	2	0	$A_2 S_9 = 6$
	s ₁₀	4	5	3	$A_2 S_{10} = 12$
		$A_2B_1 = 20$	$A_2B_2 = 15$	$A_2B_3 = 7$	$A_2 = 42$
	s ₁₁	4	2	0	$A_3S_{11} = 6$
	s ₁₂	2	6	1	$A_3 S_{12} = 9$
a_3 : Romance	s ₁₃	3	3	3	$A_3S_{13} = 9$
	s ₁₄	6	2	1	$A_{3}S_{14} = 9$
	s ₁₅	3	3	2	$A_{3}S_{15} = 8$
		$A_{3}B_{1} = 18$	$A_3B_2 = 16$	$A_3B_3 = 7$	$A_3 = 41$
		$B_1 = 50$	$B_2 = 50$	$B_3 = 46$	T = 146

		E	3		
		b ₁	b ₃		
	S ₁	1	6	S1 = 7	
	S ₂	1	8	S2 = 9	
a_1	S ₃	3	6	S3 = 9	
	S ₄	5	7	S4 = 12	
	S_5	2	5	S5 = 7	
		a1b1=12	a1b3=32	a1=44	
	S_6	3	0	S6 = 3	
	S ₇	4	2	S7 = 6	
a_2	S ₈	5	2	S8 = 7	
	S ₉	4	0	S9 = 4	
	S ₁₀	4	3	S10 = 7	
		a2b1=20	a2b3=7	a2=27	
	S ₁₁	4	0	S11 = 4	
	S ₁₂	2	1	S12 = 3	
a_3	S ₁₃	3	3	S13 = 6	
	S ₁₄	6	1	S14 = 7	
	S ₁₅	3	2	S15 = 5	
		a3b1=18	a3b3=7	a3=25	T = 96

Interactions

- Purely BG interactions can be treated with simple effects, simple contrasts and interaction contrasts using the Fcomp formula, the same error term each time
- Purely WG and mixed BG/WG interactions require a new error term for each simple effect, simple contrast and interaction contrast (leave it to SPSS)